AN ALTERNATIVE MODEL OF THE VIBRONIC COUPLING IN OCTAHEDRAL COMPLEXES

Martin BREZA^a and Peter PELIKÁN^b

^a Department of Inorganic Chemistry and

^b Department of Physical Chemistry, Slovak Institute of Technology, 812 37 Bratislava

Received July 22nd, 1987 Accepted September 10th, 1987

Dedicated to Dr R. Zahradník on the occasion of his 60th brithday.

It is suggested that for some transition metal hexahalo complexes, the $E_g(a_{1g} + e_g)$ vibronic coupling model is better suited than the classical $T_{2g}(a_{1g} + e_g)$ model. For the former, alternative model, the potential constants in the analytical formula are evaluated from the numerical map of the adiabatic potential surface by using the linear regression method. The numerical values for 29 hexahalo complexes of the 1st row transition metals are obtained by the CNDO/2 method. Some interesting trends of parameters of such Jahn-Teller-active systems are disclosed.

The Jahn-Teller effect plays an important role in numerous branches of physics and chemistry. The commonly adopted formulation of the Jahn-Teller theorem¹ states that the nonlinear geometrical configuration of nuclei in an electronically degenerate state (except for the Kramers' and accidental degeneracy) is energetically unstable. From this it follows that at least one geometric configuration of nuclei in the electronically non-degenerate state exists that is energetically stable. This corresponds to the minimum on the adiabatic potential surface (APS). The shape of APS can be described by an analytical function of the total energy of the system, with coordinates of nuclei as parameters. The actual form of this function for complexes in which the Jahn-Teller effect appears may be predicted on the basis of the vibronic coupling theory.

For octahedral MX_6 complexes, vibronic coupling in the O_h symmetry group for the double or triple electron degeneracy is usually assumed. A systematic study of the octahedral hexahalo complexes of the 1st row transition metals has been the object of our preceding papers²⁻⁵. Based on the theory of succesive splitting of the electron terms associated with the gradual decrease in the entire system symmetry^{6,7} due to the Jahn-Teller effect, it has been suggested that the vibronic coupling can be described in a lower symmetry group that still preserves the electron degeneracy⁴.

It has been known for a long time that only three types of vibronic coupling exist^{4,8} (apart from the icosahedral and linear symmetry groups), viz.:

1) $T - (a_1 + e + t_2)$ vibronic coupling with the triply degenerate electron term $-O_h$ type,

2) $E - (a_1 + b_1 + b_2)$ vibronic coupling with the doubly degenerate electron term $- D_{4h}$ type,

3) $E - (a_1 + e)$ vibronic coupling with the doubly degenerate electron term $- D_{3d}$ type.

Confining oneself to centrosymmetrical deformations of the initial octahedron, described by changes in two axial (r_a) and/or four equatorial (r_e) M—X distances, all the above-mentioned types of vibronic coupling can be described by the formula⁴

$$W(Q_1, Q_x) = s(A_x - Z_{ax}Q_1) Q_x + sB_{xx}Q_x^2 + K_aQ_1 + \frac{1}{2}K_{aa}Q_1^2 + \frac{1}{2}K_{xx}Q_x^2 + T_{aaa}Q_1^3 + T_{axx}Q_1Q_x^2 - T_{xxx}Q_x^3 + W^0, \qquad (1)$$

where A_x , Z_{ax} , B_{xx} are vibronic constants, K_a , K_{aa} , K_{xx} , T_{aaa} , T_{axx} , T_{xxx} are vibrational constants, Q_1 and Q_x are a_1 and x type coordinates, respectively, the subscript x stands for e for the O_h and D_{3d} types and b_1 or b_2 for the D_{4h} type; W^0 is the energy of the system in the reference geometrical configuration of an ideal octahedron, s = +1 or -0.5 for the O_h type, s = +1 or -1 for the D_{3d} type and s = +1 or -1, $T_{xxx} = 0$, $B_{xx} = 0$ for the D_{4h} type. The positive values of the s parameter refer to $r_a > r_e$, the negative values to $r_a < r_e$; the reverse convention, however, can be also adopted.

It is evident from these data that in our case the D_{3d} and D_{4h} types differ only in the values of the T_{xxx} and B_{xx} constants. For practical purposes (i.e., for assessing whether they can be neglected or not) it is sufficient to investigate the D_{3d} type coupling model.

CALCULATIONS

In accordance with our previous studies²⁻⁵, the symmetrized coordinates to be inserted in Eq. (1) can be defined as follows:

$$Q_{1} = \sqrt{\frac{2}{3}}(r_{a} + 2r_{e} - 3r^{0})$$

$$Q_{x} = Q_{3} = \sqrt{\frac{4}{3}}(r_{a} - r_{e}), \qquad (2)$$

where r_a are (two) axial and r_e (four) equatorial distances between the central atom and the ligand and r^o is this distance in the reference geometrical configuration of the ideal octahedron.

If the analytical form (1) of the APS is known, the potential constant values can be determined from the points of the numerical map, $W_i^c(Q_1, Q_3)$, obtained by

quantum-chemical calculations of the total energy of the system with fixed nuclear coordinates. The simple regression method can be used for this purpose. Fitting may be accomplished by using the weighted least-squares method

$$F = \sum_{i} \left[W_{i}^{c}(Q_{1}, Q_{3}) - W_{i}^{a}(Q_{1}, Q_{3}) \right]^{2} w_{i}^{2} = \min , \qquad (3)$$

where $W_i^a(Q_1, Q_3)$ are the approximate energies calculated for a trial set of potential constants of the analytical form of the APS (Eq. (1)). The statistical metric weighing is defined by

$$w_i = (Q_1^2 + Q_3^2)^{-1/2}, \qquad (4)$$

where Q_1 and Q_3 are the local coordinates of the *i*-th point of APS.

RESULTS AND DISCUSSION

The values of the potential constants $(K_a, K_{aa}, K_{xx}, T_{aaa}, T_{axx}, T_{xxx}, A_x, B_{xx}, Z_{ax})$ were evaluated for 29 complexes of the ^m[MX₆]^q type (X = F, Cl, Br), listed in Table I. The two-dimensional maps, $W^e(Q_1, Q_3)$, (33 to 42 points for each system) were obtained by the semiempirical CNDO/2 method in the UHF version for transition metals⁹⁻¹¹. The energy was calculated with an accuracy of 10⁻⁵ eV. The points of APS extremes (Q_1^e, Q_3^e) and the Jahn-Teller stabilization energies

$$E_{\rm JT} = W(-K_{\rm a}/K_{\rm aa}, 0) - W(Q_1^{\rm e}, Q_3^{\rm e})$$
(5)

were determined from the calculated potential constants values. The reliability of the results obtained was assessed via statistical characteristics such as the standard deviations of the individual constants, the correlation coefficient, and the scattering R-factor.

TABLE I Some characteristics of the MX_6 systems under study (X = F, Cl, Br)

Electron	Symmet	ry descent ⁴
configuration	Yes	No
t_{2q}^4	${}^{3}[CrX_{6}]^{4}, {}^{3}[MnX_{6}]^{3}$	${}^{1}[CrX_{6}]^{4}, {}^{1}[MnX_{6}]^{3}$
t_{2g}^{5}	${}^{2}[MnF_{6}]^{4-}$, ${}^{2}[MnCl_{6}]^{4-}$	${}^{2}[MnBr_{6}]^{4}$, ${}^{2}[FeX_{6}]^{3}$
$t_{2g}^4 e_g^2$	${}^{5}[\text{FeX}_{6}]^{4-}, {}^{5}[\text{CoX}_{6}]^{3-}$	_
$t_{2g}^{5}e_{g}^{2}$	$4[CoX_6]^4$	${}^{4}[\text{NiF}_{6}]^{3}, {}^{4}[\text{NiCl}_{6}]^{3}$

Collection Czechoslovak Chem. Commun. (Vol. 53) (1988)

Table II summarizes the calculated potential constant values, given to the full number of valid digits (the order of the last digit is equal to the order of the standard deviation). The characteristics of the extreme points of the APS are similarly given in Table III.

Our results indicate some trends, applying to the classical $T_{2g} - (a_{1g} + e_g)$ vibronic coupling model^{3,5} as well as to systems with double electron degeneracy²:

1) For the harmonic potential constants we have $K_{aa} > K_{xx}$, so that the non-symmetrical Q_3 vibration can be considered as a "soft" mode, energetically more favourable than the symmetric stretching.

2) The two-mode quadratic vibronic constant Z_{ax} attains a significantly high value as compared to the single-mode B_{xx} constant, which documents its importance. The anharmonic effects also cannot be neglected, as demonstrated by the values of the T_{aaa} , T_{aax} , and T_{xxx} constants.

3) The values of the K_{aa} and K_{xx} constants are higher for the M(III) complexes than for the M(II) complexes; the linear vibronic constant A_x also attains more negative values for the higher oxidation state of M than for the lower oxidation state. From this it also follows that the E_{JT} values will be higher for the M(III) complexes than for the M(II) complexes.

4) The value of the K_{aa} constant increases with increasing proton number of the central atom.

Some other trends observed are only partly analogous to our previous results $^{2-5}$:

5) In the case of the Cr(II) and Mn(III) complexes the effect of spin multiplicity can be observed: the higher number of unpaired electrons is associated with a decrease in the A_x values and with more negative values of the B_{xx} constants. For K_{xx} , Z_{ax} and E_{JT} , however, such trends are not observed.

6) Except for the cobalt complexes, the E_{IT} values depend on the metal-ligand bond polarity: for the M(II) complexes these values increase in the ligand order F - Cl - Br, whereas for the M(III) complexes they increase in the reverse order.

The results obtained in this study also reveal some new facts:

7) For all ligands, the type of distortion (elongation or compression of the octahedron) depends on the oxidation and spin state of the central atom.

8) The values of the K_{aa} , K_{xx} , and A_x constants, the E_{JT} values and the magnitude of the distortion differ only slightly for the two (classical and alternative) vibronic coupling models.

In conclusion it should be stressed that the differences between the measurable quantities in the two models are small and are not amenable to observation in real systems. The CNDO/2 method also has intrinsic quantitative limitations bringing about over- or underestimation of some constants and thereby, of the distortions and stabilization energies. Nevertheless, our experience warrants the assumption

Η
В
B
F

.Ц	7
are	2 []]
	().
X	Ē
and	M
(a)	
K_{a}	z
ax,	
2	M
8 x	Ŭ
- -	×
۲ ۲	as
໌ຍ 0	bəu
010	efir
n	sđ
e	or i
aı	gt
X,	R-f
pui	le
	F.
ب	<u>و</u>
sed	-
ä	10
nit	2.
D	602
'dy	÷
stu	1
ler	[e]
Jun	. .
S	' "
fel	>
sys	်
he	103
of t	.Е
s	are
lue	
Va	Τ,
ant	pu
nst	, , a
3	T.,,
tial	
tent	Т.,
pot	2
ed	B
llat	Š
lcu	20
S	10

	R	0-01128	0.00950	0-01630	0-00456	0-00533	0-00566	0-01650	0-00259	0.00808	0.01030	0-01170	0-00492	0-06507	0-00521	0-00294	0-01145	0-00589	0-00481	0-00331	0-00160	0.00807	0.00814	0-00724	0-00546	0-01387	0-00152	0-00466	0.00421	0-00555
i	Correl. coeff.	0-999894	0-999929	961666-0	086666-0	0-999971	0-999972	0-999817	966666-0	0-999961	0-999921	0-999859	0-999985	0-998931	0-999983	0-999994	606666-0	086666-0	986666-0	0-999993	866666-0	0-999945	0-999966	696666-0	0-999981	068666-0	866666-0	0-999985	886666-0	086666-0
i	T _{xxx}	32-16	33-89	51-0	- 17-76	— 17·08	- 26·33	162·1	157-5	107-0	-47.8	-61.0	-66.1	3.7	4.6	47-64	275-4	10-81	7.11	19-07	20-87	35.48	- 62.5	- 87-6	-63·7	89-7	42.25	36-2	98-3	70-6
	T _{axx}	1.9	- 1·2	10-7	-15.13	-15.36		32-5	-11.4	27·1	-28.4	-43·3	-40.9	171	7·2	38-98	7.5	29-4	- 16-88	-19-27	-23.30	-26.6	– 124·8	23	L-9	-179-4	- 33-86	8.4	2.6	16-5
	T_{aaa}	4·47	-3.70	-5.15	-2.81	-2.78	- 3-59	-7.90	-6-652	- 8-77	-6.34	- 5-87	- 6.48	19-3	- 5.587	-6.81	- 14·27	-6.83	-7·27	-6.56	- 5·399	-5.30	2.53 -	- 12.7	4-47	2.7 -	- 7·279	-4.78	-13.3	- 10-68
	K _{xx}	10-448	9-375	10-756	10-600	8·893	11-157	21-46	18.148	19-818	20·89	18-052	19-345	14.53	14·826	16-998	23-068	21.58	22.480	17-942	15-197	16-830	36-95	31-590	24.159	24-94	20-950	22·024	37-982	28-276
	K _{aa}	16-067	14.884	18-845	15-996	14-9156	18.848	29·314	26.145	30-209	29-087	25-932	30-426	19-47	20-866	25.221	32-959	29-958	34-765	26-684	24-4744	28·734	42.517	34.552	39-326	33-1055	29-9781	34.505	49-499	41.570
	Ka	0-0033	-0.00012	0-00245	0-00005	0.00138	-0.00015	0.0125	0 0176	0-0263	0-0154	0-0829	0-0113	0-0118	0-0227	0.00709	0-0179	0-10282	0-0062	0.00682	-0.0173	-0.00001	0-0190	0-0259	0.00756	-0.0347	-0.0109	0.01370	-0.0110	0-0159
	Z_{ax}	0-201	0.128	0.384	-0.213	-0.22	-0.134	0-74	0-49	1.20	-0.60	-1.07	0-805	7-44	1.52	1.990	0-401	-0.91	0-137	-0.111	-0.425	-0.371	-0.43	66.0	-0.62	-6.22	-1.240	1.57	0-74	0-978
	B _{xx}	1.721	1.730	2.615		-0.830	-1.2700	8-505	7.327	5-884	- 3-567	-3.130	-3.370	0-29	0-365	2-482	8-383	1.749	1.471	-1.281	-1.098	-1.665	-4.533		- 3·622	3-331	1-832	1.218	5-880	3-821
	Ax	-0.054	-0.0563	-0.0787	0-02774	-0.0250	-0.04185	-0.3157	-0.2077	-0.2106	-0.1592	-0.1022	-0.1041	-0.0302	-0.0387	-0.05381	-0.1486	-0.1141	-0.1012	-0.0412	-0.0381	-0.0480	-0.2508	-0.2293	-0.1086	-0.0744	-0.0556	-0.05637	-0.2451	-0.1186
	System	¹ [CrF ₆] ^{4 –}	¹ [CrCl ₆] ^{4 –}	¹ [CrBr ₆] ^{4 –}	³ [CrF ₆] ^{4 -}	³ [CrCl ₆] ^{4 –}	³ [CrBr ₆] ^{4 –}	$^{1}[MnF_{6}]^{3-}$	¹ [MnCl ₆] ^{3 –}	¹ [MnBr ₆] ^{3 –}	³ [MnF ₆] ^{3 –}	³ [MnCl ₆] ^{3 –}	³ [MnBr ₆] ^{3 -}	² [MnF ₆] ^{4 –}	² [MnCl ₆] ^{4 –}	$^{2}[MnBr_{6}]^{4}$	$^{2}[FeF_{6}]^{3}$	² [FeCl ₆] ^{3 –}	² [FeBr ₆] ^{3 –}	5[FeF,] ⁴ -	⁵ [FeCl ₆] ^{4 –}	⁵ [FeBr ₆] ^{4 –}	⁵ [CoF ₆] ^{3 -}	⁵ [CoCl ₆] ^{3 -}	⁵ [CoBr ₆] ^{3 –}	⁴ [CoF ₆] ^{4 -}	⁴ [CoCl ₆] ^{4 -}	⁴ [CoBr ₆] ^{4 –}	⁴ [NiF ₆] ^{3 –}	⁴ [NiCl ₆] ^{3 –}

Collection Czechoslovak Chem. Commun. (Vol. 53) (1988)

Calculated characteristics of APS extreme points. Units used: r^0 , r_a^e , ρ_e^e , Q_1^e , and Q_3^e are in 10^{-12} m; E_{JT} are in 10^{-3} eV; r_a is axial (2x) metal-ligand distance, r_e is equatorial (4x) metal-ligand distance, r_e is optimum metal-ligand distance for the ideal octahedron

			Minimur	E				Š	iddle point		
oystem	0,4	$\varrho_1^{\mathfrak{e}}$	Q_3^{e}	ra a	ء, رو	$E_{ m JT}$	$\mathcal{Q}_1^{\mathfrak{e}}$	$Q_3^{\mathfrak{e}}$	ra a	و. م	$E_{ m JT}$
¹ [CrF ₆] ^{4 –}	234.60	-0.013	-0.703	235-41	234.19	0.20	-0-011	0-016	234.13	234.82	0.11
¹ [CrCl ₆] ^{4 –}	262.32	0-0161	-0.833	263.29	261.85	0-24	0.0125	0·142	261.80	262-59	0.13
¹ [CrBr _k] ^{4 –}	272.59	0-002	- 1.093	273-85	271-96	0-46	-0.004	0-518	271-99	272·89	0.20
³ [CrF,] ⁴ -	234.60	-0.035	0.306	234.25	234-78	0.04	-0.003	-0.228	234.86	234·47	0-03
³ [CrCl ₆] ^{4 -}	262-335	-0.013	0.338	261-94	262-52	0.04	-0.012	-0.240	262-61	262.19	0-03
³ [CrBr ₆] ^{4 –}	272-59	0.006	0.466	272-05	272.86	0.10	0.006	-0.311	272-95	272-41	0.07
$^{1}[MnF_{6}]^{3-}$	207-949	-0.040	-2.13	210-39	206·70	4.15	-0.029	0.930	206.86	208-47	1-40
¹ [MnCl ₆] ^{3 –}	239-542	-0.021	- 1-76	241.56	238-52	2.26	-0.0522	0-0703	238-81	239-93	0-71
¹ [MnBr ₆] ^{3 –}	254.308	-0.047	-1.60	256.13	253-37	1.89	0-063	0-717	253-45	254-70	0-73
³ [MnF ₆] ^{3 –}	207-955	-0.066	1.04	206-72	208-53	0-86	-0.063	-0-586	208-61	207-59	0-47
³ [MnCl ₆] ^{3 –}	239.668	-0.341	0.783	238.63	239-98	0-43	-0.334	0-444	240-04	239-28	0-23
³ [MnBr ₆] ^{3 –}	254.306	-0.049	0.741	253-43	254-71	0-40	0-046	-0-413	254·76	254-05	0-22
² [MnF ₆] ^{4 –}	219-643	0.021	-0.226	219-91	219-52	0-03	0-015	0-207	219-41	219-77	0-03
$^{2}[MnCl_{6}]^{4}$	249-397	060.0 -	-0.265	249-66	249-21	0.05	-0.092	0-241	249·08	249-50	0 .06
$^{2}[MnBr_{6}]^{4}$	262·472	0-003	-0.426	262-97	262·23	0.12	-0.010	0.248	262·18	262-61	0-07
² [FeF ₆] ^{3 –}	204.355	-0.0442	-1.012	205-51	203-75	06-0	-0.050	0-407	203·86	204-57	0.30
² [FeCl ₆] ^{3 –}	235-702	-0.358	-0.634	236.29	235.19	0-37	-0.354	0-467	235-02	235-83	0-27
$^{2}[FeBr_{6}]^{3-}$	251-035	-0.014	-0.515	251.62	250·73	0-26	-0.015	0.399	250.57	251-26	0-20
⁵ [FeF ₆] ^{4 -}	217-635	-0.026	0-265	217-32	217·78	0·0	-0.026	-0.202	217·86	217-51	0.04
⁵ [FeCl ₆] ^{4 –}	245.821	0.066	0-287	245.52	246.01	0·0	0.067	0-219	246.10	245-72	0·05
⁵ [FeBr ₆] ^{4 –}	259-742	-0.003	0.346	259-34	259-94	0.08	-0.002	0-241	260·02	259-60	0·0
⁵ [CoF ₆] ^{3 –}	199-352	-0.032	0.849	198-36	199-83	1.09	0-041	-0.557	199-98	199-01	0·70
⁵ [CoCl ₆] ^{3 -}	230-798	-0.108	0-949	229-66	231·30	1.14	0-094	0-579	231-43	230-43	0-66
⁵ [CoBr ₆] ^{3 –}	247.505	-0.028	0-602	246.80	247·84	0.34	-0.025	-0-354	247-90	247·29	0-19
⁴ [CoF ₆] ^{4 -}	207.368	0.042	-0.375	207-82	207.17	0-13	0-065	0.229	207·13	207-53	0.08
⁴ [CoCl ₆] ^{4 –}	237-759	0.024	-0.313	238-13	237-59	60.0	0-028	0.277	237-51	237-90	0 · 06
⁴ [CoBr ₆] ^{4 –}	253-484	0-027	-0.281	253.80	253-31	0-08	0-029	0.231	253-21	253-61	0.07
⁴ [NiF ₆] ³⁻	191-822	0.035	-0.854	192.82	191-82	1·08	0.030	0-508	191-25	192-13	0.62
$4[NiCl_6]^{3-}$	224-901	-0.027	-0.543	225-52	224-58	0-33		0-336	224.50	225-08	0-20

Collection Czechoslovak Chem. Commun. (Vol. 53) (1988)

Vibronic Coupling

that the trends of the calculated quantities are correct within the framework of the model adopted. It should be, however, borne in mind that the higher distortions and stabilization energies observed in real systems are to a high extent contributed to by solid state effects, which can predominate substantially over the Jahn-Teller effect as would manifest itself in isolated systems.

REFERENCES

- Jahn H. A., Teller E.: Proc. R. Soc. London, A 161, 220 (1937).
 Jahn H. A.: Proc. R. Soc. London, A 164, 117 (1938).
- 2. Pelikán P., Breza M., Boča R.: Polyhedron 4, 1543 (1985).
- 3. Pelikán P., Breza M., Boča R.: Polyhedron 5, 753 (1986).
- 4. Breza M., Pelikán P., Boča R.: Polyhedron 5, 1607 (1986).
- 5. Breza M., Pelikán P.: Chem. Papers, in press.
- 6. Pelikán P., Breza M.: Chem. Papers 39, 255 (1985).
- 7. Pelikán P., Breza M.: Theochem, J. Mol. Struct. 124, 231 (1985).
- 8. Griffith J. S.: The Irreducible Tensor Method for Molecular Symmetry Groups. Prentice-Hall, Englewood Cliffs, New Jersey 1962.
- 9. Clack D. W., Hush N. S., Yandle J. R.: J. Chem. Phys. 57, 3503 (1972).
- 10. Pople J. A., Beveridge D. L.: Approximate Molecular Orbital Theory. McGraw-Hill, New York 1970.
- 11. Boča R.: Program MOSEM2. Slovak Institute of Technology, Bratislava 1980.

Translated by Z. Prášil.

1140